183 research outputs found

    The added value of diagnostic and theranostic PET imaging for the treatment of CNS tumors

    Get PDF
    This review highlights the added value of PET imaging in Central Nervous System (CNS) tumors, which is a tool that has rapidly evolved from a merely diagnostic setting to multimodal molecular diagnostics and the guidance of targeted therapy. PET is the method of choice for studying target expression and target binding behind the assumedly intact blood–brain barrier. Today, a variety of diagnostic PET tracers can be used for the primary staging of CNS tumors and to determine the effect of therapy. Additionally, theranostic PET tracers are increasingly used in the context of pharmaceutical and radiopharmaceutical drug development and application. In this approach, a single targeted drug is used for PET diagnosis, upon the coupling of a PET radionuclide, as well as for targeted (nuclide) therapy. Theranostic PET tracers have the potential to serve as a non-invasive whole body navigator in the selection of the most effective drug candidates and their most optimal dose and administration route, together with the potential to serve as a predictive biomarker in the selection of patients who are most likely to benefit from treatment. PET imaging supports the transition from trial and error medicine to predictive, preventive, and personalized medicine, hopefully leading to improved quality of life for patients and more cost-effective care

    High resolution combined molecular and structural optical imaging of colorectal cancer in a xenograft mouse model

    Get PDF
    With the emergence of immunotherapies for cancer treatment, there is a rising clinical need to visualize the tumor microenvironment (TME) non-invasively in detail, which could be crucial to predict the efficacy of therapy. Nuclear imaging techniques enable whole-body imaging but lack the required spatial resolution. Conversely, near-infrared immunofluorescence (immuno-NIRF) is able to reveal tumor cells and/or other cell subsets in the TME by targeting the expression of a specific membrane receptor with fluorescently labeled monoclonal antibodies (mAb). Optical coherence tomography (OCT) provides three-dimensional morphological imaging of tissues without exogenous contrast agents. The combination of the two allows molecular and structural contrast at a resolution of ~15 µm, allowing for the specific location of a cell-type target with immuno-NIRF as well as revealing the three-dimensional architectural context with OCT. For the first time, combined immuno-NIRF and OCT of a tumor is demonstrated in situ in a xenograft mouse model of human colorectal cancer, targeted by a clinically-safe fluorescent mAb, revealing unprecedented details of the TME. A handheld scanner for ex vivo examination and an endoscope designed for imaging bronchioles in vivo are presented. This technique promises to complement nuclear imaging for diagnosing cancer invasiveness, precisely determining tumor margins, and studying the biodistribution of newly developed antibodies in high detail

    Noise sensitivity of 89Zr-Immuno-PET radiomics based on count-reduced clinical images

    Get PDF
    PURPOSE: Low photon count in (89)Zr-Immuno-PET results in images with a low signal-to-noise ratio (SNR). Since PET radiomics are sensitive to noise, this study focuses on the impact of noise on radiomic features from (89)Zr-Immuno-PET clinical images. We hypothesise that (89)Zr-Immuno-PET derived radiomic features have: (1) noise-induced variability affecting their precision and (2) noise-induced bias affecting their accuracy. This study aims to identify those features that are not or only minimally affected by noise in terms of precision and accuracy. METHODS: Count-split (89)Zr-Immuno-PET patient scans from previous studies with three different (89)Zr-labelled monoclonal antibodies were used to extract radiomic features at 50% (S50p) and 25% (S25p) of their original counts. Tumour lesions were manually delineated on the original full-count (89)Zr-Immuno-PET scans. Noise-induced variability and bias were assessed using intraclass correlation coefficient (ICC) and similarity distance metric (SDM), respectively. Based on the ICC and SDM values, the radiomic features were categorised as having poor [0, 0.5), moderate [0.5, 0.75), good [0.75, 0.9), or excellent [0.9, 1] precision and accuracy. The number of features classified into these categories was compared between the S50p and S25p images using Fisher’s exact test. All p values < 0.01 were considered statistically significant. RESULTS: For S50p, a total of 92% and 90% features were classified as having good or excellent ICC and SDM respectively, while for S25p, these decreased to 81% and 31%. In total, 148 features (31%) showed robustness to noise with good or moderate ICC and SDM in both S50p and S25p. The number of features classified into the four ICC and SDM categories between S50p and S25p was significantly different statistically. CONCLUSION: Several radiomic features derived from low SNR (89)Zr-Immuno-PET images exhibit noise-induced variability and/or bias. However, 196 features (43%) that show minimal noise-induced variability and bias in S50p images have been identified. These features are less affected by noise and are, therefore, suitable candidates to be further studied as prognostic and predictive quantitative biomarkers in (89)Zr-Immuno-PET studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40658-022-00444-4

    The human cytomegalovirus-encoded G protein- coupled receptor UL33 exhibits oncomodulatory properties

    Get PDF
    Herpesviruses can rewire cellular signaling in host cells by expressing viral G protein- coupled receptors (GPCRs). These viral receptors exhibit homology to human chemokine receptors, but some display constitutive activity and promiscuous G protein coupling. Human cytomegalovirus (HCMV) has been detected in multiple cancers, including glioblastoma, and its genome encodes four GPCRs. One of these receptors, US28, is expressed in glioblastoma and possesses constitutive activity and oncomodulatory properties. UL33, another HCMV-encoded GPCR, also displays constitutive signaling via Gαq, Gαi, and Gαs proteins. However, little is known about the nature and functional effects of UL33-driven signaling. Here, we assessed UL33's signaling repertoire and oncomodulatory potential. UL33 activated multiple proliferative, angiogenic, and inflammatory signaling pathways in HEK293T and U251 glioblastoma cells. Notably, upon infection, UL33 contributed to HCMV-mediated STAT3 activation. Moreover, UL33 increased spheroid growth in vitro and accelerated tumor growth in different in vivo tumor models, including an orthotopic glioblastoma xenograft model. UL33-mediated signaling was similar to that stimulated by US28; however, UL33-induced tumor growth was delayed. Additionally, the spatiotemporal expression of the two receptors only partially overlapped in HCMV-infected glioblastoma cells. In conclusion, our results unveil that UL33 has broad signaling capacity and provide mechanistic insight into its functional effects. UL33, like US28, exhibits oncomodulatory properties, elicited via constitutive activation of multiple signaling pathways. UL33 and US28 might contribute to HCMV's oncomodulatory effects through complementing and converging cellular signaling, and hence UL33 may represent a promising drug target in HCMV-associated malignancies

    Pharmacodynamic evaluation and safety assessment of treatment with antibodies to serum amyloid P component in patients with cardiac amyloidosis: an open-label Phase 2 study and an adjunctive immuno-PET imaging study.

    Get PDF
    BACKGROUND: In a Phase I study treatment with the serum amyloid P component (SAP) depleter miridesap followed by monoclonal antibody to SAP (dezamizumab) showed removal of amyloid from liver, spleen and kidney in patients with systemic amyloidosis. We report results from a Phase 2 study and concurrent immuno-positron emission tomography (PET) study assessing efficacy, pharmacodynamics, pharmacokinetics, safety and cardiac uptake (of dezamizumab) following the same intervention in patients with cardiac amyloidosis. METHODS: Both were uncontrolled open-label studies. After SAP depletion with miridesap, patients received ≤ 6 monthly doses of dezamizumab in the Phase 2 trial (n = 7), ≤ 2 doses of non-radiolabelled dezamizumab plus [89Zr]Zr-dezamizumab (total mass dose of 80 mg at session 1 and 500 mg at session 2) in the immuno-PET study (n = 2). Primary endpoints of the Phase 2 study were changed from baseline to follow-up (at 8 weeks) in left ventricular mass (LVM) by cardiac magnetic resonance imaging and safety. Primary endpoint of the immuno-PET study was [89Zr]Zr-dezamizumab cardiac uptake assessed via PET. RESULTS: Dezamizumab produced no appreciable or consistent reduction in LVM nor improvement in cardiac function in the Phase 2 study. In the immuno-PET study, measurable cardiac uptake of [89Zr]Zr-dezamizumab, although seen in both patients, was moderate to low. Uptake was notably lower in the patient with higher LVM. Treatment-associated rash with cutaneous small-vessel vasculitis was observed in both studies. Abdominal large-vessel vasculitis after initial dezamizumab dosing (300 mg) occurred in the first patient with immunoglobulin light chain amyloidosis enrolled in the Phase 2 study. Symptom resolution was nearly complete within 24 h of intravenous methylprednisolone and dezamizumab discontinuation; abdominal computed tomography imaging showed vasculitis resolution by 8 weeks. CONCLUSIONS: Unlike previous observations of visceral amyloid reduction, there was no appreciable evidence of amyloid removal in patients with cardiac amyloidosis in this Phase 2 trial, potentially related to limited cardiac uptake of dezamizumab as demonstrated in the immuno-PET study. The benefit-risk assessment for dezamizumab in cardiac amyloidosis was considered unfavourable after the incidence of large-vessel vasculitis and development for this indication was terminated. Trial registration NCT03044353 (2 February 2017) and NCT03417830 (25 January 2018)
    • …
    corecore